SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bäckman Lars) ;pers:(Andersson Micael);pers:(Axelsson Jan)"

Search: WFRF:(Bäckman Lars) > Andersson Micael > Axelsson Jan

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Köhncke, Ylva, et al. (author)
  • Self-rated intensity of habitual physical activities is positively associated with dopamine D-2/3 receptor availability and cognition
  • 2018
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 181, s. 605-616
  • Journal article (peer-reviewed)abstract
    • Between-person differences in cognitive performance in older age are associated with variations in physical activity. The neurotransmitter dopamine (DA) contributes to cognitive performance, and the DA system deteriorates with advancing age. Animal data and a patient study suggest that physical activity modulates DA receptor availability, but data from healthy humans are lacking. In a cross-sectional study with 178 adults aged 64-68 years, we investigated links among self-reported physical activity, D(2/3)DA receptor (D2/3DR) availability, and cognitive performance. D2/3DR availability was measured with [C-11]raclopride positron emission tomography at rest. We used structural equation modeling to obtain latent factors for processing speed, episodic memory, working memory, physical activity, and D2/3DR availability in caudate, putamen, and hippocampus. Physical activity intensity was positively associated with D2/3DR availability in caudate, but not putamen and hippocampus. Frequency of physical activity was not related to D2/3DR availability. Physical activity intensity was positively related to episodic memory and working memory. D2/3DR availability in caudate and hippocampus was positively related to episodic memory. Taken together, our results suggest that striatal DA availability might be a neurochemical correlate of episodic memory that is also associated with physical activity.
  •  
2.
  • Lövdén, Martin, et al. (author)
  • Latent-Profile Analysis Reveals Behavioral and Brain Correlates of Dopamine-Cognition Associations
  • 2018
  • In: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 28:11, s. 3894-3907
  • Journal article (peer-reviewed)abstract
    • Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with C-11-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.
  •  
3.
  • Salami, Alireza, et al. (author)
  • Dopamine D-2/3 Binding Potential Modulates Neural Signatures of Working Memory in a Load-Dependent Fashion
  • 2019
  • In: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 39:3, s. 537-547
  • Journal article (peer-reviewed)abstract
    • Dopamine (DA) modulates corticostriatal connections. Studies in which imaging of the DA system is integrated with functional imaging during cognitive performance have yielded mixed findings. Some work has shown a link between striatal DA(measured by PET) and fMRI activations, whereas others have failed to observe such a relationship. One possible reason for these discrepant findings is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. Moreover, a potential DA-BOLD association may be modulated by task performance. We studied 155 (104 normal-performing and 51 low-performing) healthy older adults (43% females) who underwent fMRI scanning while performing a working memory (WM) n-back task along with DA D-2/3 PET assessment using [C-11] raclopride. Using multivariate partial-least-squares analysis, we observed a significant pattern revealing positive associations of striatal as well as extrastriatal DA D-2/3 receptors to BOLD response in the thalamo-striatalcortical circuit, which supports WM functioning. Critically, the DA-BOLD association in normal-performing, but not low-performing, individuals was expressed in a load-dependent fashion, with stronger associations during 3-back than 1-/2-back conditions. Moreover, normal-performing adults expressing upregulated BOLD in response to increasing task demands showed a stronger DA-BOLD association during 3-back, whereas low-performing individuals expressed a stronger association during 2-back conditions. This pattern suggests a nonlinear DA-BOLD performance association, with the strongest link at the maximum capacity level. Together, our results suggest that DA may have a stronger impact on functional brain responses during more demanding cognitive tasks.
  •  
4.
  • Karalija, Nina, 1984-, et al. (author)
  • C957T-mediated Variation in Ligand Affinity Affects the Association between C-11-raclopride Binding Potential and Cognition
  • 2019
  • In: Journal of cognitive neuroscience. - : MIT Press. - 0898-929X .- 1530-8898. ; 31:2, s. 314-325
  • Journal article (peer-reviewed)abstract
    • The dopamine (DA) system plays an important role in cognition. Accordingly, normal variation in DA genes has been found to predict individual differences in cognitive performance. However, little is known of the impact of genetic differences on the link between empirical indicators of the DA system and cognition in humans. The present work used PET with C-11-raclopride to assess DA D2-receptor binding potential (BP) and links to episodic memory, working memory, and perceptual speed in 179 healthy adults aged 64-68 years. Previously, the T-allele of a DA D2-receptor single-nucleotide polymorphism, C957T, was associated with increased apparent affinity of C-11-raclopride, giving rise to higher BP values despite similar receptor density values between allelic groups. Consequently, we hypothesized that C-11-raclopride BP measures inflated by affinity rather than D2-receptor density in T-allele carriers would not be predictive of DA integrity and therefore prevent finding an association between C-11-raclopride BP and cognitive performance. In accordance with previous findings, we show that C-11-raclopride BP was increased in T-homozygotes. Importantly, C-11-raclopride BP was only associated with cognitive performance in groups with low or average ligand affinity (C-allele carriers of C957T, n = 124), but not in the high-affinity group (T-homozygotes, n = 55). The strongest C-11-raclopride BP-cognition associations and the highest level of performance were found in C-homozygotes. These findings show that genetic differences modulate the link between BP and cognition and thus have important implications for the interpretation of DA assessments with PET and C-11-raclopride in multiple disciplines ranging from cognitive neuroscience to psychiatry and neurology.
  •  
5.
  • Karalija, Nina, 1984-, et al. (author)
  • Cardiovascular factors are related to dopamine integrity and cognition in aging
  • 2019
  • In: Annals of Clinical and Translational Neurology. - : Wiley-Blackwell. - 2328-9503. ; 6:11, s. 2291-2303
  • Journal article (peer-reviewed)abstract
    • Objective: The aging brain undergoes several changes, including reduced vascular, structural, and dopamine (DA) system integrity. Such brain changes have been associated with age‐related cognitive deficits. However, their relative importance, interrelations, and links to risk factors remain elusive.Methods: The present work used magnetic resonance imaging and positron emission tomography with 11C‐raclopride to jointly examine vascular parameters (white‐matter lesions and perfusion), DA D2‐receptor availability, brain structure, and cognitive performance in healthy older adults (n = 181, age: 64–68 years) from the Cognition, Brain, and Aging (COBRA) study.Results: Covariance was found among several brain indicators, where top predictors of cognitive performance included caudate and hippocampal integrity (D2DR availability and volumes), and cortical blood flow and regional volumes. White‐matter lesion burden was negatively correlated with caudate DA D2‐receptor availability and white‐matter microstructure. Compared to individuals with smaller lesions, individuals with confluent lesions (exceeding 20 mm in diameter) had reductions in cortical and hippocampal perfusion, striatal and hippocampal D2‐receptor availability, white‐matter microstructure, and reduced performance on tests of episodic memory, sequence learning, and processing speed. Higher cardiovascular risk as assessed by treatment for hypertension, systolic blood pressure, overweight, and smoking was associated with lower frontal cortical perfusion, lower putaminal D2DR availability, smaller grey‐matter volumes, a larger number of white‐matter lesions, and lower episodic memory performance.Interpretation: Taken together, these findings suggest that reduced cardiovascular health is associated with poorer status for brain variables that are central to age‐sensitive cognitive functions, with emphasis on DA integrity.
  •  
6.
  • Karalija, Nina, 1984-, et al. (author)
  • Longitudinal Dopamine D2 Receptor Changes and Cerebrovascular Health in Aging
  • 2022
  • In: Neurology. - 1526-632X .- 0028-3878. ; 99, s. e1278-e1289
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND OBJECTIVES: Cross-sectional studies suggest marked dopamine (DA) decline in aging, but longitudinal evidence is lacking. The aim of this study was to estimate within-person decline rates for DA D2-like receptors (DRD2) in aging and examine factors that may contribute to individual differences in DRD2 decline rates. METHODS: We investigated 5-year within-person changes in DRD2 availability in a sample of older adults. At both occasions, PET with 11C-raclopride and MRI were used to measure DRD2 availability in conjunction with structural and vascular brain integrity. RESULTS: Longitudinal analyses of the sample (baseline: n = 181, ages: 64-68 years, 100 men and 81 women; 5-year follow-up: n = 129, 69 men and 60 women) revealed aging-related striatal and extrastriatal DRD2 decline, along with marked individual differences in rates of change. Notably, the magnitude of striatal DRD2 decline was ∼50% of past cross-sectional estimates, suggesting that the DRD2 decline rate has been overestimated in past cross-sectional studies. Significant DRD2 reductions were also observed in select extrastriatal regions, including hippocampus, orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Distinct profiles of correlated DRD2 changes were found across several associative regions (ACC, dorsal striatum, and hippocampus) and in the reward circuit (nucleus accumbens and OFC). DRD2 losses in associative regions were associated with white matter lesion progression, whereas DRD2 losses in limbic regions were related to reduced cortical perfusion. DISCUSSION: These findings provide the first longitudinal evidence for individual and region-specific differences of DRD2 decline in older age and support the hypothesis that cerebrovascular factors are linked to age-related dopaminergic decline.
  •  
7.
  • Karalija, Nina, 1984-, et al. (author)
  • Sex differences in dopamine integrity and brain structure among healthy older adults : Relationships to episodic memory
  • 2021
  • In: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 105, s. 272-279
  • Journal article (peer-reviewed)abstract
    • Normal brain aging is a multidimensional process that includes deterioration in various brain structures and functions, with large heterogeneity in patterns and rates of decline. Sex differences have been reported for various cognitive and brain parameters, but little is known in relation to neuromodulatory aspects of brain aging. We examined sex differences in dopamine D2-receptor (D2DR) availability in relation to episodic memory, but also, grey-matter volumes, white-matter lesions, and cerebral perfusion in healthy older adults (n = 181, age: 64-68 years) from the Cognition, Brain, and Aging study. Women had higher D2DR availability in midbrain and left caudate and putamen, as well as superior episodic memory performance. Controlling for left caudate D2DR availability attenuated sex differences in memory performance. In men, lower left caudate D2DR levels were associated with lower cortical perfusion and higher burden of white-matter lesions, as well as with episodic memory performance. However, sex was not a significant moderator of the reported links to D2DR levels. Our findings suggest that sex differences in multiple associations among DA receptor availability, vascular factors, and structural connectivity contribute to sex differences in episodic memory. Future longitudinal studies need to corroborate these patterns by lead-lag associations. This manuscript is part of the Special Issue entitled 'Cognitive Neuroscience of Healthy and Pathological Aging' edited by Drs. M. N. Rajah, S. Belleville, and R. Cabeza. 
  •  
8.
  • Nyberg, Lars, et al. (author)
  • Dopamine D2 receptor availability is linked to hippocampal-caudate functional connectivity and episodic memory
  • 2016
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:28, s. 7918-7923
  • Journal article (peer-reviewed)abstract
    • D1 and D2 dopamine receptors (D1DRs and D2DRs) may contribute differently to various aspects of memory and cognition. The D1DR system has been linked to functions supported by the prefrontal cortex. By contrast, the role of the D2DR system is less clear, although it has been hypothesized that D2DRs make a specific contribution to hippocampus-based cognitive functions. Here we present results from 181 healthy adults between 64 and 68 y of age who underwent comprehensive assessment of episodic memory, working memory, and processing speed, along with MRI and D2DR assessment with [C-11]raclopride and PET. Caudate D2DR availability was positively associated with episodic memory but not with working memory or speed. Whole-brain analyses further revealed a relation between hippocampal D2DR availability and episodic memory. Hippocampal and caudate D2DR availability were interrelated, and functional MRI-based resting-state functional connectivity between the ventral caudate and medial temporal cortex increased as a function of caudate D2DR availability. Collectively, these findings indicate that D2DRs make a specific contribution to hippocampus-based cognition by influencing striatal and hippocampal regions, and their interactions.
  •  
9.
  • Papenberg, Goran, et al. (author)
  • Balance between Transmitter Availability and Dopamine D2 Receptors in Prefrontal Cortex Influences Memory Functioning
  • 2020
  • In: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 30:3, s. 989-1000
  • Journal article (peer-reviewed)abstract
    • Insufficient or excessive dopaminergic tone impairs cognitive performance. We examine whether the balance between transmitter availability and dopamine (DA) D2 receptors (D2DRs) is important for successful memory performance in a large sample of adults (n= 175, 64-68 years). The Catechol-O-Methyltransferase polymorphism served as genetic proxy for endogenous prefrontal DA availability, and D2DRs in dorsolateral prefrontal cortex (dlPFC) were measured with [C-11]raclopride-PET. Individuals for whom D2DR status matched DA availability showed higher levels of episodic and working-memory performance than individuals with insufficient or excessive DA availability relative to the number of receptors. A similar pattern restricted to episodic memory was observed for D2DRs in caudate. Functional magnetic resonance imaging data acquired during working-memory performance confirmed the importance of a balanced DA system for load-dependent brain activity in dlPFC. Our data suggest that the inverted-U-shaped function relating DA signaling to cognition is modulated by a dynamic association between DA availability and receptor status.
  •  
10.
  • Papenberg, Goran, et al. (author)
  • The Influence of Hippocampal Dopamine D2 Receptors on Episodic Memory Is Modulated by BDNF and KIBRA Polymorphisms
  • 2019
  • In: Journal of cognitive neuroscience. - : MIT Press - Journals. - 0898-929X .- 1530-8898. ; 31:9, s. 1422-1429
  • Journal article (peer-reviewed)abstract
    • Episodic memory is a polygenic trait influenced by different molecular mechanisms. We used PET and a candidate gene approach to investigate how individual differences at the molecular level translate into between-person differences in episodic memory performance of elderly persons. Specifically, we examined the interactive effects between hippocampal dopamine D2 receptor (D2DR) availability and candidate genes relevant for hippocampus-related memory functioning. We show that the positive effects of high D2DR availability in the hippocampus on episodic memory are confined to carriers of advantageous genotypes of the brain-derived neurotrophic factor (BDNF, rs6265) and the kidney and brain expressed protein (KIBRA, rs17070145) polymorphisms. By contrast, these polymorphisms did not modulate the positive relationship between caudate D2DR availability and episodic memory.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view